A semi-supervised learning framework for gas chimney detection based on sparse autoencoder and TSVM
نویسندگان
چکیده
منابع مشابه
Sparse Autoencoder Based Semi-Supervised Learning for Phone Classification with Limited Annotations
We propose the application of a semi-supervised learning method to improve the performance of acoustic modelling for automatic speech recognition with limited linguistically annotated material. Our method combines sparse autoencoders with feed-forward networks, thus taking advantage of both unlabelled and labelled data simultaneously through mini-batch stochastic gradient descent. We tested the...
متن کاملSemi-Supervised Recursive Autoencoder
In this project, we implement the semi-supervised Recursive Autoencoders (RAE), and achieve the result comparable with result in [1] on the Movie Review Polarity dataset1. We achieve 76.08% accuracy, which is slightly lower than [1] ’s result 76.8%, with less vector length. Experiments show that the model can learn sentiment and build reasonable structure from sentence.We find longer word vecto...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملVariational Autoencoder for Semi-Supervised Text Classification
Although semi-supervised variational autoencoder (SemiVAE) works in image classification task, it fails in text classification task if using vanilla LSTM as its decoder. From a perspective of reinforcement learning, it is verified that the decoder’s capability to distinguish between different categorical labels is essential. Therefore, Semi-supervised Sequential Variational Autoencoder (SSVAE) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysics and Engineering
سال: 2019
ISSN: 1742-2132,1742-2140
DOI: 10.1093/jge/gxy004